ψ     .



 / [ψ    .

 / [ψ     .


  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.

FÍSICA GRACELI DIMENSIONAL.




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  1 /  = [          ] ω       ψ      [  ]/ [    ]    .   .



   = [          ] ,     [ ψ     [ [ ]     .




 = [          ] ,     [ ψ      [][]    .



ψ [ ψ  [ ]/    .



ψ  /  [ ]    . ] 



ψ      [   ]    .



 ψ      /   ]    .


ψ       / ]    .






ψ   /  ]/     .


* [  / ] .








  /  ].  .


ψ  /  ]  .










 /]    .


ψ      [ /   ]  / ]    .






ψ      / ] ]/ / ]     .





ψ [  /

] .










ψ ] / ψ     .



   / ] / ψ   .


equação para a energia do fóton[5] é





A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.



A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas características específicas de cada interação

Comentários

Mensagens populares deste blogue